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Abstract

The adaptive dynamics of heterogeneous interacting agents competing for
scarce resources are believed to underlie the behaviour of most economic
systems. The economic agents have to be the best in order to survive in
the market. In recent studies of market behaviour, tools of statistical physics
have been combined with theories of economics, like game theory, which deals
with making decisions when a number of rational opponents are involved
under conditions of conflict and competition. Here, we consider a simple
game theoretical model of heterogeneous interacting agents and assume that
the agents play the “basic minority game” and in addition, the agents adapt
by modifying their strategies periodically, depending on their performances,
in order to be the best. The strategies are modified using genetic crossover,
inspired from genetic evolution in biology. We find interesting patterns in the
performances of the agents when they use these genetic-crossover strategies
and the game enters into more “efficient” states.

LA.C. presented a paper with similar contents, entitled “Biology helps you to win a
game”, at the conference “Unconventional Applications of Statistical Physics” held at Saha
Institute of Nuclear Physics, Kolkata on March 20-22, 2003.



1 Introduction

Is the “survival of the fittest” principle limited to biology only? Perhaps not
and there could be other spheres of life in which this principle is applicable.
Competition plays a key role and in order to compete and thus survive in
any environment or situation, one primarily needs to adapt in order to suc-
ceed. Then what is adaptation and evolution? Adaptation is an alteration or
adjustment in structure or habits, often hereditary, by which a species or in-
dividual improves its condition in relationship to its environment. Evolution
is the change in the genetic composition of a population during successive
generations, as a result of natural selection acting on the genetic variation
among individuals, and resulting in the development of a new species. Here,
we show that in the behaviour of various complex systems found in natu-
ral and social environments [1, 2, 3, 4, 5|, that can be characterized by the
competition among interacting agents for scarce resources, adaptation to the
environment plays a very important role.

These agents could be diverse in form and in capability, ranging for ex-
ample, from carcinogenic cells in the human body to multinational firms in
the global financial market. In these dynamically evolving complex systems
the nature of agents and their behaviour differ a lot but they have a common
underlying mechanism. In order to have a deeper understanding of the inter-
actions of the large number of agents, one should first consider the individual
capabilities of the agents. Its behaviour may be thought of as a collection of
simple rules governing “responses”’ to numerous “stimuli”. The rules of action
serve as the agents’ strategies, and the behaviour of an agent is the rules
acting sequentially. Therefore, in order to model any complex dynamically
adaptive system, a major concern is the selection and representation of the
stimuli and responses, since the behaviour and strategies of the component
agents are determined thereby. Then the agent needs to adapt to different
situations, where the experience of an agent guides it to change its structure
so that as time passes, the agent learns to make better use of the environment
for its own benefit. However, the timescales over which the agents adapt vary
from one individual to another and also from one system to another.

In complex adaptive systems, many interesting temporal patterns are pro-
duced, since a major part of the environment of a particular agent includes
other adaptive agents and a considerable amount of agent’s effort goes in
adaptation and reaction to the other agents. Thus the situation is consider-
ably different and more complicated than in game theory |6] and conventional



theories in economics, where the study is of patterns in behavioural equilib-
rium that induce no further interaction.

In this paper, we study a simple game based on the basic minority game
[7, 8, 10, 9, 11], where the agents adapt themselves by modifying their strate-
gies from time to time, depending on their current performances, using ge-
netic crossover mechanisms |12, 13, 14, 15]. The game can be a very simple
representation of a complex adaptive system. We make a comparative study
of their performances with the various mechanisms and in a “test” situation.

2 Model

In this section we give a brief description of the model. The basic minority
game consists of an odd number N of agents who can perform at a given
time ¢, any of the two possible actions denoted here by 0 or 1. The minority
game was based on the El Farol bar problem, created by Brian Arthur, in
which a population of agents have to decide whether to go to the bar every
Thursday night, and so there were two possible actions “to attend” denoted
by 1 and “not to attend” denoted by 0, depending on whether the bar was too
crowded or not [5]. An agent wins the game if it is one of the members of the
minority group. All the agents are assumed to have access to finite amount of
“global” information: a common bit-string “memory” of the M most recent
outcomes. With this there are 2 possible “history” bit-strings. Now, a
“strategy” consists of two possible responses, which in the binary sense are
an action 0 or action 1 to each possible history bit-strings. Thus, there are
22" possible strategies constituting the whole “strategy space”. Each player
has an initial pool of k£ strategies drawn randomly from the whole strategy
space.

Each time the game has been played, time ¢ is incremented by unity and
one “virtual” point is assigned to the strategies that predicted the correct
outcome and the best strategy is the one which has the highest virtual point
score. The performance of a player is measured by the number of times
the player wins, and the strategy, which the player uses to win, gets a “real”
point. The number of agents who have chosen a particular action, say 1 which
represents “to attend”, is denoted by A;(t) (also referred as “attendance”) and
it varies with time. We have plotted the attendance and performance for the
basic minority game in Fig. 1.

Now we define the total utility of the system as the number of persons in
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Figure 1: Plots of (a) attendance and (b) performance of the players for the
basic minority game with N =801, M =6, k = 10 and 7" = 5000.

the minority group at a given time t. For convenience, we mathematically
define a scaled utility (total utility/maximum utility) as

U=[1-0(x; —zn))xe +0(xs — x00) (N — 24)] /01, (1)

where xpr = (N — 1)/2, x; is either equal to A;(t) or Ap(t), and O(x) is
Heaviside step function:

9(3:):{0 when x <0

1  when x > 0.

The players examine their performances after every time interval 7. If a
player finds that he is among the fraction n (where 0 < n < 1) who are the
worst performing players, he adapts himself and modifies his strategies. The
mechanism by which the player creates new strategies is genetic crossover,
whereby he selects the two “parents” from his pool of k strategies and creates
two new “children” [14, 15], as described in Fig. 2.

If the parents are chosen randomly from the pool of strategies then
the mechanism represents a “one-point genetic crossover” and if the par-
ents are the best strategies then the mechanism represents a “hybridized
genetic crossover”. The children may replace parents or two worst strategies
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Figure 2: Schematic diagram to illustrate the mechanism of one-point genetic
crossover for producing new strategies. The strategies s; and s; are the
parents. We choose the breaking point randomly and through this one-point
genetic crossover, the children s, and s; are produced.

and accordingly four different interesting cases arise: (a) one-point genetic
crossover with parents “killed”, i.e. parents are replaced by the children, (b)
one-point genetic crossover with parents “saved”, i.e. the two worst strate-
gies are replaced by the children but the parents are retained, (c¢) hybridized
genetic crossover with parents “killed” and (d) hybridized genetic crossover
with parents “saved”.

It should be noted that the mechanism of evolution of strategies is con-
siderably different from earlier attempts |7, 16, 17|. This is because in this
mechanism the strategies are changed by the agents themselves and even
though the strategy space evolves continuously, its size and dimensionality
remain the same.

The Hamming distance dy between two bit-strings is defined as the ratio
of the number of uncommon bits to the total length of the bit strings. It is
a measure of the correlation between two strategies:

0 correlated
dg = ¢ 0.5 uncorrelated
1 anti-correlated

which can be plotted as the game evolves.



800 800

600

500
400
400

Attendance

200 300

Attendance

200

=)

2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time Time

800 800

600 600

400 400

Attendance
Attendance

200

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time Time

Figure 3: Plots of the attendances by choosing parents randomly (a) and (b),
and using the best parents in a player’s pool (c) and (d). In (a) and (c) case
parents are replaced by children and in (b) and (d) case children replace the
two worst strategies. Simulations have been done with N = 801, M = 6,
k=16, 7 =40, n = 0.4 and T" = 10000.

3 Results

In order to determine which mechanism is the most efficient, we have made
a comparative study of the four cases, mentioned earlier. We plot the atten-
dance as a function of time for the different mechanisms in Fig. 3.

In Fig. 4 we show the total utility of the system in each of the cases
(a)-(d), where we have plotted results of the average over 100 runs and each
point in the utility curve represents a time average taken over a bin of length
50 time-steps. The simulation time is doubled from those in Fig. 3, in order
to expose the asymptotic behaviour better. On the basis of Figs. 3 and 4,
we find that the case (d) is the most efficient.

In Fig. 5 (a) one can see the evolution of the average Hamming distance
of all the strategies of a player in a game, where the player adapts using
one-point genetic crossover and the two worst strategies are replaced by the
children and the parents are also saved. It should be noted that the Ham-
ming distance can change only when the worst strategies are replaced by the
children and the parents are saved, where the bits in a strategy pool can
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Figure 4: Plots of the scaled utilities of the four different mechanisms in
comparison with that of the basic minority game. Each curve represents an
ensemble average over 100 runs and each point in a curve is a time average
over a bin of length 50 time-steps. In the inset, the quantity (1 — U) is
plotted against scaled time in the double logarithmic scale. Simulations are
done with N =801, M =6, k = 16, 7 = 40, n = 0.4 and T" = 20000.
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Figure 5: Plot of the average Hamming distance of all the strategies in a pool
of a playerwith time, where the player adapts using (a) one-point genetic
crossover and (b) hybridized genetic crossover, and in both cases the two
worst strategies are replaced by the children and the parents are also saved.
Each curve is an ensemble average over 20 runs.
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Figure 6: Plot of the performance of the players where after 7' = 3120 time-
steps, six players begin to adapt and modify their strategies: three using
hybridized genetic crossover mechanism and the other three using one point
genetic crossover, where children replace the parents. Other players play the
basic minority game all the time and do not adapt. The simulations are done
with N =801, M =8, k=16, n = 0.3, 7 = 80, and 7" = 10000.

change over time. Otherwise the bits in the pool of strategies remain the
same. We observe that the curves tend to move downwards from around 0.5
towards zero, which means that as the time evolves, the correlation amongst
the strategies increases and the strategies in the pool of a particular agent
converges towards one strategy. The nature of the curves depend a lot on the
parameters of the game. In Fig. 5 (b) one can see the evolution of the aver-
age Hamming distance of all the strategies of a player in the game, where the
player adapts using hybridized genetic crossover and the two worst strategies
are replaced by the children and the parents are also saved. Here too, the
strategies in the pool of a particular agent converges towards one strategy,
and at a faster rate than with the previous mechanism. We observe that in-
creasing memory M does not change dramatically the convergence rate, but
as we increase the number of strategies in the pools, the convergence slows
down.

In order to investigate what happens in the level of an individual agent,
we created a competitive surrounding- “test” situation where after 7' = 3120



time-steps, six players begin to adapt and modify their strategies such that
three are using hybridized genetic crossover mechanism and the other three
one point genetic crossover, where children replace the parents. The rest
of the players play the basic minority game. In this case it turns out that
in the end the best players are those who use the hybridized mechanism,
second best are those using the one-point mechanism, and the bad players
those who do not adapt at all (see Fig. 6). In addition it turns out that
the competition amongst the players who adapt using the hybridized genetic
crossover mechanism is severe.

4 Conclusion

We can summarize our findings by stating that adaptation improves not only
the individual player’s performance but also improves the total utility of the
system. The best results are found for the players who adapt and modify
their strategies using the hybridized genetic crossover mechanism and the
children replace the two worst strategies and the parents are saved. The
mechanism of adaptation is very simple and can be used to model different
complex adaptive systems. It can also be potentially developed to include
other features like mutation.
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